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REDUCTION OF AN ELASTIC SYSTEM TO A PRESCRIBED STATE 
BY USE OF A BOUNDARY FORCE* 

L.D. AKULSNKO 

A solution is constructed for the problem of optimal control of the motion of a dis- 

tributed elastic system, using a lumped boundary force. The system's state is 
described by a constant-coefficient hyperbolic equation. A general case of arbit- 
rary initial and final distributions is examined. Questions of control by lumped 
and distributed forces are discussed. 

1. Introductory remarks and statement of the fundamental control problem. 
We examine the optimal control problem forthestate of a homogeneous elastic systemonafixed 

timeinterval/1,2/. We assume that the initial and the final distributions of the elastic 
deviationsare specified and arbitrary. For definiteness we can consider a homogeneouselastic 

spring (beam) or an elastic shaft as the mechanical analog of such a system. As the control- 
ling time function we take the magnitude of a force (a force or a moment of forces) on the 

system's boundary. The state of such a system is described by a hyperbolic partial differen- 

tial equation and can be investigated under prescribed forces within the framework of the 
theory of the equations of mathematical physics /3/. The integral of the squareofthe control 
function serves as the functional characterizing the control's performance. Such a statement 
of the control problem enables us to answer questions ontheprincipal capabilities of the 
control in the class of bounded piecewise-continuous time functions. We note that under cer- 
tain conditions the statement given can be ill-posed /4/. To construct the piece-wise-contin- 
uous control we use a modified method of moments /5,6/ analogous to that used in /l/. As a 

result we find the optimal control problem's solution in explicit finite form. 
The investigation of control problems for systems with elastic elements by meansofbound- 

ary, distributed, lumped (impulsive) and moving controlling forces is urgent at the present 

time for solving a number of applied problems in mechanics and engineering. Theoretically the 
solution of control problems for distributed-parameter oscillating systems is beset by a 
number of specific singularities /1,7/ in comparison with the corresponding finite-dimensional 

analogs. In various settings such problems were investigated in /1,2,7-13/ and elsewhere. 

We state the fundamental control problem. We assume that the system to be controlled 

(elastic beam or shaft) is described by the equations /3/ 

pm'" = cm", 'p = cp (t, 5), s E (8, I) 1 ccp’ (t, 0) = --M (t), cp’ (t, I) = 0, t E ito, TJ (1.1) 

Here 'p is the elastic deviation of the cross-section (linear or angular) with coordinate z 

at instant t; the dots indicate differentiation with respect to 1 and the primes,withrespect 

to x. The problem's constant parameters are: p is the linear inertia characteristic (distri- 

bution density of the mass or of the moment of inertia), c is the material's rigiditycharacter- 

istic (the Young's modulus or the torsional rigidity), 1 is the length, P, c, I> 0, t,, T are 
prescribed instants, T > t,. The unknown function M(t) is the control (a force or a moment 

of forces, lumped, for definiteness, at the left end 5 = 0). 

We pose the optimal control problem for the distributed system (1.1) being controlled. 

By a choice of the admissible control function M(t)we take the system from an arbitrary init- 

ial state 

'p (to, m) = f" (x), 'p' (t&r) = go (.z) (1.2) 

to a prescribed final state 

'P (T, r) = f= (4, cp’ CT, 4 = 8 (3 (1.3) 

in such a way that the functional 
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(1.4) 

is minimized /l/. Here fOsT (z), g"vT (5) are sufficiently smooth functions of z,z E[O, l],contin- 
uous to be precise, and f".r is piecewise-continuously differentiable. We shall establish 
below that the optimal control problem (l.l)- (1.4) has a solution when certain additional as- 
sumptions are fulfilled. We pass to dimensionless quantities by means of the linear trans- 
formations (see /ll/) 

t, = vt, v2 = Cl@, x* = I! 1, x* E [O, II (1.5) 

'p* = 'p I L, f*O* T (5*) = fO- T (s*2) / L 

g”sT (x*) = $sT (x*Z) I vL, M, = Ml I CL, S, = Jv12 I c2L2 

Here L is a typical magnitude of the dimension of variable cp; in particular, we can set L = 
1, for elastic linear displacements and L = 1 for torsional ones. Henceforth we omit the sub- 
script* to shorten the notation and we obtain the relations of optimal control problem (1.1) 
- (1.4), in which p = c = I= 1. 

Because the problem is autonomous (stationary), the time dependence in the controlenters 
as a difference t-t,, and T-to. Therefore, it can be examined for to =O, with a subsequent 
substitution t - t - t,, T+T-to. The final conditions (1.3) permit us, in particular, to treat 
the elastic system's displacement problem as a whole at a specified distance or at a fixed 
point E with a damping of the oscillations 

'P CT, z) = 5, TO' (T, 2) = 0 (1.6) 

The problem of delineating some osillation mode can be posed analogously (see Sect.3). Other 
problem statements having a definite mechanical sense are possible. For instance, the reduc- 
tion of the system to a state of translational displacement with velocity q (without elastic 
oscillations) : 

T CT, 4 - (cp (T, 4) = 0, ‘P’ CT, 4 = rl (1.7) 

Here the angle brackets denote the average with respect to 5, ZE [O,il. Final conditions that 
are combinations of (1.6) and (1.7) are of specific interest. In the general case, the final 
conditions imposed on T,cp' can be a system (finite or countable) of functionals on cp (T,z), cp’(T, 

5). 

2. Solution of the fundamental problem. We apply the Fourier method /1,3,11/,i.e., 
we construct the function (~(t,x) in the form 

~(t,I)=~~~T,(t)X,(z), X,(r) = css nn=, n=0,1,... (2.1) 

Here {X,) is the orthogonal system of eigenfunctions of the homogeneous boundary-value pro- 
blem (1.1) and T,,(t) are unknown functions of t, yet to be determined. They form the solu- 
tion of the infinite-dimensional optimal control problem (n = 0, 1, 2, . . .): 

(2.2) 
T,” = M (t), T,” + JCWT, = 2n4 (t), t E IO, Tl 

~,IbO,T=f:T> T,‘IkO,T=&T 

T 

J[M]=S AP(t)dt-m;lln, IMj<ca 

0 

The constants fnosT, g,,OsT are the Fourier coefficients of the functions fO*T(x), tiT (x) from 

(l-2), or (1.7)) with respect the system in 
/2/, from of the solution the adjoint we find that 
M (t) is 

(t) = (t), v 2) = v (t), t E IO, TI (2.3) 

Here A an unknown constant and u(t) is an unknown 2-periodic of representable 
by Fourier series. To determine we make of the representations 

functions T,,(t) of their derivatives, in accordance with (2.2) 
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To (t) = i (t - z) M (7) do + k” + go% T,‘+t (2.4) 
0 

T&)=&W ) 1 z snnn(t--)dz+f,“cosrrlltC +lnnt, T+-$ n=i,2,... 
0 

Substituting functions (2.4) into the final conditions (2.2), for the determination of the 
unknown function we have the moments problem 

T 

s 
u(z)dz=gOT-gO”-+ATa 

(2.5) 

0 

T 

s 
u(~)cosnntch =Tf,,T sin nnT + ~g,,TcosnnT - 

0 

fg,“-*f5cosnnrdr 
0 

T 

Sv(r)sinnnzdz=-_f~TCosnnT+~g,TsinNlr +Gf,,‘-A\Tsionnrdr 
0 0 

Since u(t) isaperiodic function, setting /l/ T=2N+0, N=0,1,2,..., 0,<0<2,, we obtain 
for the new unknown function 

vT @) = { 
(N+ I)u(t), tE[‘hel 

NV@), t E $4 2) 
(2.6) 

an explicit expression in the form of the Fourier series 

vT (t) = GO f 5 (G,, cos nnt $ F,, Sin nnt) (2.7) 
??=I 

Go = goT - go” - ‘12ATa 

G,=~f,TsinnnT+~g,TcosnnT -+g,,‘-A zcosnnzdt s 
0 

F, = - 9 f,,T COSJVLT + +g,,T sin nnT+ 

0 

On the basis of (1.2), (l-l), (2.2) the periodic function VT(t) is formally determined, accord- 
ing to (2.7), in explicit form for all I: 

v,(t)-o(T,t)- AY(T,t) (2.8) 

‘D(T,t)=+ GT(T-t--_[?I)+ 

F”(T--t-2[v]))-+{G’(t-2[+])+ +2[3])} 

Y(T,t)=t+2[?]* +2[4% ++(2[q)“-$(2[+]) 

Here the square brackets denote the integer part of the number. 
'f' are 2-periodic, 

We note that the functions 0, 
while the functions GOsT, PsT 

by the relations /I/ 
are determined, by use of functions g3sT, fOvT, 

$8 T (C ogt,<1 

GoST(f)={$3(2-I), l<t.<2 

FO’ T (t) = 
1 

P; T’ (t), O<t<1 

-fCT’(2-t), 1<tg2 

(2.9) 

We can now find the function u(t) directly from (2.6) with N = 1,2, . . . in the form 
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(2.10) 

However, if N =Q, i.e., T = 8< 2. then function u(t) may not exist for every one of the 
right-hand sides of relations (2.5). 

Let us first consider the case N 3 1. We find the unknown constant A from the final 
condition (2.2) for T,(T), using expression (2.4) into which the function M(t) from (2.3) is 
substituted and taking (2.6), (2.8) into account. We obtain 

M (t) = A’f’* (T, I) -t ct,* (T, t), t E [o, 2’1 (2.11) 

Here the functions Y* 

(m = 0, 1, . . ., N): 
and a,* for tE [2m, 2m + 81 and TV (2m : 0,2(m + I)), respectively,equal 

Yp*= 
t - (N t_ I)-’ ‘1,” 

t-N-Y ’ (2.12) 

We substitute the function M(t)from (2.11) into the unused final condition of (2.2): T,(T)= 

foT. The constant A is determined uniquely under the condition 

J 

A(T) = i (T - T) Y* (T, T) dr # 0 

0 
(2.13) 

Substituting this value of A into (2.111, we obtain the control, optimal in the sense of cri- 
terion (1.4), 

M* (t) = [foT - fo” - g,‘T - [(T - t) @* (T, z)dT] w + a* (T, t) (2.14) ., 
0 

leading the elastic system (1.1) in time Tfrom the arbitrary initial state (1.2) into the 
prescribed final state (1.3). The optimal controlled motion rp* (t, I) equals 

~*(t,2)=~~([‘+(t--r)]-[Ir--(t--r)]}lM*(r)d~+ 
0 

(2.15) 

+ s {g (z + z - IX + tl) + go (5 - z - [ix - ~1)) dz ++{r (x + t - Is + tl) + f” (x - t - I+ - tl)) 
0 

We note that condition (2.13) A(T)#O is fulfilled for T> 2 since Y*(T,~)> o for t>c~. If, 

however, T =: 2, i.e., N = I,0 = 0, then Y* ~0 for t~(0, T) and A(T)- 0. In this case the right- 
hand sides of (2.5) are the Fourier coefficients of function u(t), while the solution of the 

control problem exists when the expression within square brackets in (2.14) vanishes. Control 
M(t) from (2.11) and functional J from (1.4). or (2.2) are independent of A. 

Let us consider the moments problem (2.5) in the case T<2. On the complete interval 

O< t< 2 we introduce a function w(t)equal to v(t)when tE LO, 01 and w (t)sO when t E (8, 21. 
Then, according to (2.8), we obtain w(t) = 0 (T,t)- AY(T,~), where Y ss t; therefore,Y* (I', t)s 

in (2.11)- (2.13), but the constant A can be arbitrary. 
;,T g”,T 

In this connection the functions 

must be such that w(t)- 0 for some A when tE [% 21. As mentioned in Sect.1, the 

control M* (t) from (2.14) has been constructed for an arbitrary initial distribution (1.2) at 

an arbitrary initial instant t,. For this it is necessary to make in (2.14) the change: 

t-t (t - to), T + (T - t,,). As a result the control M*can be represented as a function of these 

arguments and as a linear operator on r$(t,. z) = f” (z), q’ (t,,, 2) = g” (x) (as well as on fT, gT; this 

dependency is not shown for brevity): 

M* = M, (t - t,, T - t,, If” (x)1, [go @)I) (2.16) 

Having replaced in (2.16) the initial quantities by the current ones: t, --f t, f” (5) + cp (L 5)? go 

(5) + ‘p’ (6 2), we obtain the control, optimal in the sense of (1.4), in the form of a synthesis. 

We should bear in mind here that representation (2.16) is valid for T-t>2. Beginning with 

the instant t< T-2 we should apply the programmed control constructed above in accordance 

with (2.14). However, if T-t,< 2, then the control is of form (2.11). 
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3. Concrete statements of the control problem. lo. For the problem of damping 
of the elastic oscillations due to the initial deviations (1.2), the final conditions (2.21 
are (T,(T), T',(T) are arbitrary) 

T, (T) = 0, 2,1;(T) = 0, n = 1, 2, . . . (3.1) 

If the elastic body must be at rest in an arbitrary position, then conditions (3.1) must be 
augmented by the equality To'(T) = 0, i.e., gr (z) se 0; in this case A* = 0. If the position 
is fixed for t = T, then T,(T)=5 , where E is a prescribed quantity, i.e., fT (2) = E, (see 

(1.6)). We note that when A4 = O(t> T) the system (1.1) admits of a solution of the form in- 
dicated above. 

2'. In the problem of picking out oscillation modes (see Sect.11, for example, some k-th 
mode, the final conditions (2.2) have the form 

T, (T) = 0, T,’ (T) = 0, n = 0, 1, . . ., k - 1, k + 1, . . . (3.2) 

Tk (T) = fkT, Tk’ (T) = gkT 

Obviously, the functions fr and gT equal 

fT (z) = fkT cos nkx, gT (x) = gkT cos nkx 

If, further, we set the control M (t)zO when t> T, then the elastic system will accomplish 
oscillations of only the k-th mode. 

3'. Let us consider the case 6 = 0, i.e. the time interval T = 2N, N = 1,2, . . . . is a 
multiple of the period of the natural oscillations. For N = 1 the problem has been studied 
in Sect.2. For N = 2,3, . . . the construction of control M(t) on the basis of (2.11) is essent- 
ially simplified. In accord with (2.6)- (2.10) the function u(t)is specifiedbyoneexpression: 
v(t) = v~(t)/N, TV IO, 2N]. The control M (t) too is computed uniquely with the aid of (2.15). 
In particular, in the problem of leading the elastic system to a state of translational dis- 
placement as a whole with prescribedvelocity q(see (l.l), (l-2), (1.7)) the optimal control 
equals 

M*(t)=&- ~(G”(t-2~~])+F”.(t-Z[~])} (3.3) 

The optimal motion is described by formula (2.16). The solution of the problem of leading the 
elastic system to a prescribed position cp (T,x)= 5 (see l.l), (1.21, (1.6)) with a damping of 
the elastic oscillations is constructed analogously. 

4. Generalization of the control problem. The investigation of the controlproblem 
for a system more general than (1.1) is of systematic interest. The elastic system can be sub- 
ject to additional controls and to external forces both distributed as well as lumped (boundary) 

p(p” = ccp” + w (t, 5) + w, ‘p = ‘p (t. 3, 5 E (0, 1) (4.1) 

c’p (t, 0) = -m, (t) -M,, c’p’ (t, I) = ml (t) + Ml, t E [t,, T] 

Here w is aprescribed distributed external force, m,, ml are prescribed forces lumped at the 
left and right ends, W is a distributed control, a function of t and 5, M,,'MI are lumped 
(boundary) controls, functions of t (see Sect.2). The initial and final conditions for the 
variable cp = q(t,x) again are of form (1.2), (1.3), or more general (see Sect.1). As the 
functional to be minimized we can take a weighted sum of quantities of form (1.4) 

(4.2) 

Here cty2, co', cl2 are constant "weight" coefficients greater than zero. An unrestrictedincrease 
of some of them makes the corresponding controls tend to zero. and their contributions to func- 
tional (4.2) tend to zero as well. For instance, as c",,~ + 00 we obtain the optimal control 
problem for system (4.1), (1.2), (1.3) with a functional (4.2) in which M,=Ml=O, i.e., 
the control is effected solely by the function w(t, x). Analogously to Sect.2 we can establish 
that the solution exists and is unique for any sufficiently smooth functions w, m,, ml, PT. $sT 
and T > to. Its explicit construction both as a program and as a synthesis presents no dif- 
ficulty. Indeed, setting s = t - t,, where so [O, S], S = T-t,, by the Fourier method, having 
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solved the adjoint system /2/, we obtain the expression 

W(t,r)=+(& + &)+ g(A, sin nns $ 
n=l 

B, cos nns) cos nnx (4.3) 

for the required control W'(t, 5). The constants A,,B,(n = O,i,...) are determined from final 
conditions of type (2.2): 

(4.4) 

4 (S) = (P / 4)[1 - (wzS)-~ sir? nnS] 

The expressions for A,,B, are obtained from (4.4) as n-t 0. The coefficients n,,? b, depend 
on the parameters t,,S and are functionals on the initial and final distributions, as wellas 
on the prescribed boundary and distributed forces 

a,,=- s [w,(ul- to)+ Zm.o(o + t,)+ Zmr(u i- to)] sin nna do + nf,“-- xnf,TcosnnS + gnT sinnnS 
0 

b,=- f Iw,, (u + to) + 2mo ((J + to) + 2ml (u + to)] cos nnu du - g," + nnf,,T sin nns + gnT cm nnb’ 
0 m 

w (t, x) = 2 wn (1) cos nnx, t=s+to 
n=o 

A practical realization of such distributed controls is very difficult. In practice, 
obviously, lumped (impulsive) forces canbe realized on some , possibly dense enough, setofpoints 
of the distributed elastic system. In such situations there arise the problems which were 
discussed in /12/. The case of a moving control of distributed-parameter systems was examined 
in /I/. 

Of significant applied interest is also the study of the optimal control problem in the 
case when the density p and the rigidity c are variable. For example, the system being con- 
trolled can contain absolutely rigid bodies (flywheels /ll/) or irregularly distributedmasses. 
For such problems we can use an approach analogous to the one presented, which leads, however, 
to a more complex moments problem (see /1,7/J. However, if the system is close to the homo- 
geneous form (4.11, then for an approximate solution of the boundary-value problem it is pos- 
sible to apply the perturbation method /14/ on the basis of which an approximate optimal 
control can be constructed. 
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The author thanks N.N. Bolotnik for a useful discussion of the results. 
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